Помогите с одной задачей,объясните развернуто

Проблемы современной записи математических текстов

Помогите с одной задачей,объясните развернуто

В недавней статье товарищ KvanTTT поднял вопрос:
Можете пояснить что вам не нравится в современной записи (математических положений и) формул и как ее можно улучшить? Я постарался ответить в одном комментарии, но размер текстового поля не позволил закончить выкладки.

Данная статья — чрезмерно развернутый ответ.

Сразу скажу, материал холиварный. Местами слишком эмоциональный. Очень спорный. Слишком личный — часто основан на собственном опыте, небогатом, хоть и разнообразном.

Пост касается школьных и университетских текстов учебников: у «профессиональной» литературы своя специфика, своя аудитория. Решения у проблемы в текущих реалиях нет.

При этом, часть «моих» наблюдений задолго до меня высказывали такие авторитеты, как Кнут и Хэмминг; чуть менее популярные ребята даже запилили инструкцию “Как читать математику”.

Итак, на мой взгляд, основные претензии не столько к записи формул, сколько к подаче материала. Причем, к подаче материала на практически всех уровнях образования, начиная со школы, и заканчивая передовой наукой. Начало текущей ситуации положил Евклид, заявивший про отсутствие царской дороги в математике. Царскую дорогу не проложили до сих пор. Евклид обходился, и мы сможем.

Первая проблема — значимость не показана. Еще один подарок от Евклида: «Дай вопрошающему грош, если он ищет выгоды, а не математики». Авторы начинают вводить определения, доказывать теоремы и творить прочую математику без объяснения зачем оно вообще нужно. Пример: учебник по математическому анализу от Фихтенгольца. Почитайте первую главу: «из школьного курса вы знаете про рациональные числа, но потребности математики понуждают нас ввести вещественные…» и понеслась. Какие потребности, какой математики, чем не устраивают рациональные — да пес его знает. «Очевидно».

Или другой пример из того же учебника. «Постоянное число a называется пределом варианты если для каждого положительного сколько бы мало оно ни было, существует такой номер N, что все значения , у которых номер n>N, удовлетворяет равенству .»

Большинство студентов не понимает определения выше, но через полгода привыкает к нему. Еще больше студентов даже к концу обучения не осознает, зачем им было нужно понятие предела последовательности. Аналогично для функций, интегралов, рядов… Фихтенгольц описывает какие-то математические объекты, иногда дает частные примеры — и все. Ну да, сейчас мне понятно, что пределы нужны, например, для корректного описания верхних/нижних сумм при введении интегралов, но до интегралов еще два семестра! Или определитель, определяемый как кососимметрическая полилинейная функция. Ребята, вы это серьезно? Единственный адекватный ответ студента-первокурсника на такой определение «и что»? Выгода какая с этого определения? Не спорю, выгода есть, но всякий ли первокурсник может её осознать?

Ложное решение проблемы: история вопроса. Проявляется на всякого рода конференциях. «Проблему поставил Иаков, исследовал его ученик Авель, и ученик ученика Каин, и сто-пятьсот воплощений Вишны». В чем суть проблемы, почему её решал первоначальный автор, почему так важно убивать на неё профессоро-часы — опускается.

Следующая проблема — авторы не ставят реальных проблем

В принципе, схожа с предыдущей. Вспомните курс теории вероятностей. Какие там преобладают задачи? «В корзине лежат 25 черных и 10 белых шаров…». Казиношные примеры, карточные, D&D, экономические — не, не слышали. Мы будем использовать максимально политкорректные примеры, хоть теория вероятностей выросла из исследований игры в кости.

Про живые примеры недавно писала Free_Mic_RS

Я преподавала статистику и фин.анализ…Я преподавала статистику и фин.анализ у относительно гуманитарных ребят. Это было довольно сложно — видеть 30-90 пар пустых глаз. Меня саму начинало мутить от их беспросветного непонимания индексов, показателей и формул. Но, конечно, сообразительные ребятки были, и вот однажды я услышала, как один парень объяснял что-то сокурсникам: «Да вы уловите суть! Вы пришли в клуб и думаете, что все девушки там, как Анджелина Джоли. Идёте, а там у первой ноги короткие, у второй короткая стрижка, у третьей пятый размер, у четвёртой — нулевой, у пятой есть парень и т.д. И ни одна не Джоли, но из них её собрать можно. Но в целом это молодые девушки, с которыми можно приятно провести время. И вот то, насколько они далеки от идеала, определяет качество вашей вечеринки. В этом суть дисперсии — отклонения кучи циферок от самой главной циферки». Это было прекрасно, живо и весело. Я взяла опыт на вооружение и уже через неделю у нас был проектор с интересными презентациями и примерами, а аудитория не тупо записывала под бу-бу-бу и стук мела по доске, а искала примеры. Это была лучшая сессия за 2 года.
Математика начинается с задачи. И мертвые, однобокие задачи оставляют впечатление, что теор-вер только с ними и работает. Намерение авторов благое: дать пример, а потом перейти к общему. Абстрагировать от примера. Но несколько «живых» примеров сделали бы переход к абстракции гораздо полезнее. По крайней мере, я свято верю, что обратный процесс (переход от абстрактного к частному) проходил бы гораздо проще.

Проблема: излишняя краткость и непоследовательность

Помните школу? А формулу дискриминанта? А как она доказывается/выводится? Один из способов: чисто алгебраический. Берем уравнение , «Умножаем каждую часть на и прибавляем » (почему именно на эти значения?), еще немного трансформаций — и готово.

После дискриминанта ученикам дают дискриминант-для-четного-b. А потом формулы Виета. А ещё полные квадраты. И кучу примеров. И далеко не всегда объясняется, зачем нужны все эти методы.

А теперь представьте ситуацию, ученику говорят: «сегодня мы научимся решать уравнения с . Любые.

» И начинается серия примеров с усложнением.

Очень много примеров, которые органично приводят к решению уравнения через полные квадраты. Потом уже можно вводить дискриминант (как простой алгоритм для решения уравнений, когда ученики устанут выделять полные квадраты), и Виет с четным дискриминантом как «ноу-хау».

Схожий подход используется в учебниках. Увы, не во всех. И не везде видна четкая последовательность.

По слухам, некоторые авторы теряли листы черновиков в трамваях, а потом заменяли утерянные куски выражениями вроде «легко показать, что…».

В итоге, вместо спокойных прыжков с примера на пример, студенты были вынуждены перепрыгивать через пропасть. Сколько людей сорвалось и еще сорвется за 10+6 лет обучения в школе/ВУЗе?

Личный пример (просили в оригинальном посте). На первом курсе матана я страдал. Спокойно решая примеры, совершенно не усваивал теорию. Попросил однокурсника о помощи с вычислением длины кривой через интеграл. Тот взял бутылку пива, нарисовал рандомную кривую, спрямил бесконечно малыми отрезками, выделил один такой отрезок, достроил его до треугольника dl, dx, dy, и спросил: «Теорему Пифагора помнишь»? Дальше все было просто. Я его спросил: а почему такое не показывают на парах/в учебниках? Он показал пару контрпримеров, объяснил зачем нужен формализм в матане — и у меня попёрло. Я просто читал теорему, выделял главное, писал/решал тривиальные примеры, потом разбирался с формализмом — и реально понимал, о чем идет речь.

Я не знаю, можно ли массово использовать подход общий обзор => контрпримеры => формализм.

Не знаю, сколько и какой теории/практики нужно набрать студенту до «прорыва», с трудом представляю себе, как ставить педагогические эксперименты на эту тему, и сколько труда придется вложить в исследования.

Но память о том объяснении живет уже 10 лет. И спустя все эти годы я стараюсь слушателям сначала дать общую картину, потом показать проблемы, и потом уже погружаться в детали.

Вы скажете, мои персональные ощущения могут быть ошибочными. Помимо них у меня есть только аналогичные идеи от Хэмминга:

… я мог изучать, какие методы были эффективны, а какие нет. Посещая встречи, я уже изучал, почему некоторые работы запоминают, а большинство – нет. Технический человек хочет дать очень ограниченную техническую лекцию. Как правило, аудитория хочет широкую лекцию общего характера и хочет гораздо больше общего обзора и введений, чем желает дать спикер. В результате многие лекции неэффективны. Лектор называет тему и внезапно ныряет в детали. Мало кто может уследить. Вы должны нарисовать общую картину, чтобы рассказать, почему это важно, и затем медленно развернуть эскиз того, что было сделано. Тогда большее число людей скажут: «Да, Джо сделал это» или «Мэри сделала то, я действительно вижу, о чём это. Да, Мэри дала по-настоящему хорошую лекцию, я понимаю, что она сделала». Как правило же, люди дают очень ограниченную, безопасную лекцию; это обычно неэффективно. Кроме того, многие лекции переполнены информацией

Идеи россыпью

Должен заметить, мой опыт в преподавании крайне ограничен. Возможно, вы заметили, что я ограничился школьной программой и матанализом. Увы, это те области, где у меня была возможность соприкоснуть теорию с практикой.

Я до сих пор не понимаю сути определителя в алгебре, не осознаю проективную геометрию, и лишь полгода назад начал проникаться матрицами (сразу после практики, ага). Неплохая иллюстрация поговорки «теория без практики мертва».

Как мне рассказывали, в НМУ новый концепт всегда вводился с десятком вопросов.

А что если так? А если этот пункт условия не выполнен? Что нужно, чтоб дополнить наш концепт до полугруппы? Слушателям давали поиграть с предметом. Привыкнуть. Думаю, над опытом НМУ стоит хорошенько задуматься.

Наверняка в высших разделах математики подход «сначала пример, потом абстракция» не сработает. Так, примеры «на бумажке» никак не помогают осознать RSA. Зато растущее время работы программы с увеличением длины ключа помогает прочувствовать чисто практические аспекты. Есть опасение, что «идеальные/тепличные» школьные учебники приведут к шоку при работе с «вышкой». Вроде как, «хардкорщика надо воспитывать смолоду». Довольно сложно разрабатывать курсы, надеясь что студенты уже что-то знают. Чем больше требуемая база, тем больше вероятность, что что-то из базы студентом недопонято. Говорят, пик формы математиков — 30 лет. После 30 уже можно нагружать их писать учебники, дав в напарники спеца методиста.

Текущие технологии позволяют писать тексты командой, используя git. На хабре недавно проскакивала статья про компиляцию TeXa в pdf в процессе CI. Уверен, авторский коллектив с хорошим инструментарием может писать гораздо более качественные учебники.

Помимо профессоров, учителей, студентов и школьников в математике есть государства. И регламенты. И требования. И сертификации. Все это влияет на учебники, авторов, преподавателей, и качество подачи материала.

Как можно улучшить подачу материала в математических текстах

В текущих (российских) реалиях — никак. Энтузиасты есть, профессионалы есть, мотивации нет. У профессоров математики хватает своих задач, чтобы писать учебники. Иногда не хватает чисто гуманитарных скиллов, писать книги в университетах не учат. Плюс, профессиональная деформация: «очевидное» для профессора может быть неподъёмно для студентов.

Учителя математики загружены текучкой. И бумагами. И репетиторством. Про государство промолчу. Почти не сталкивался с его представителями, так что говорить нечего. Разве что, упомяну политику замену учебников каждые три года. После школы я хотел сдать свои учебники в библиотеку, мне сказали «они старые, нельзя их хранить». Мотивации писать хорошие учебники такой подход не добавляет.

Иными словами, от системы образования лично я позитивных подвижек не жду. Надеюсь, конечно, но не жду. Что выручает — проблески ИТ и прочей инженерии. На одной из математических конференций я получил от одного из участников книгу по компьютерной графике. Автор работал в конторе, разрабатывающей графическое ядро какой-то чертежной системы, и материал был вполне неплох.

Математика была не «чистая», прикладная, но сам факт существования хорошего учебного материала безусловно радует.

Еще один подход: преподаватели от компаний, работающие в ВУЗах. Математических текстов от этих ребят ждать не приходится, специфика не та.

Разве что, геймдевщики соберутся написать мануал по теорверу, или графики напишут про алгебру/геометрию необходимую для разработки тех же САПРов (если такие проекты есть — зовите).

Наконец, есть различные негосударственные образовательные платформы, вроде той же Coursera. Эти ребята могут все, ибо работают за деньги, конкурируют, быстро получают обратную связь. Но у них свой недостаток: формат подачи данных иной. Непосредственно текстов они не пишут.

И к чему все придет в будущем?

Самому интересно. Может, всё останется как есть. Может, будет уход от текстов в математике. А может, авторы проникнутся идеей “продукт текст должен быть удобным для клиента читателя”, и силами первопроходцев удастся таки переломить традицию. Тогда лет через 30-50-100 у нас появятся учебники, понятные большинству читателей.

Upd1. Вставил фото с вычислением длины участка кривой.

Upd2.

Источник: https://habr.com/ru/post/427345/

Основы бухгалтерии в одной статье

Помогите с одной задачей,объясните развернуто

Автор Искаков Данис

Бухгалтерия за три часа.

Вместо вступления

Данное пособие позволяет освоить азы бухгалтерии за минимальное время. Пособие написано простым и доступным языком и составлено таким образом, что любой человек может легко освоить материал, который в институте учат два года и более.

Во время тестирования, данный материал читали люди, не знакомые с бухгалтерией вообще, но после прочтения они могли читать отчетность и самостоятельно составлять бухгалтерские операции.

Автор данного пособия много лет проработал программистом и участвовал в разработке программных продуктов для бухгалтеров, финансистов, менеджеров Бэк и Фронт офиса и по мере приобретения опыта общения с заказчиками и программистами пришел к выводу, что существует барьер, между пониманием людей разных профессий.

Автору пришлось закончить много курсов по бухгалтерии и финансовой грамотности, перечитать множество очень толстых книг. Это подтолкнуло на создание пособия, где все это описано легко и главное, особенно в наш информационный век, чтобы на это уходило мало времени. Пособие претерпело несколько редакций и теперь, в уже законченном виде, представляется Вам, дорогой читатель.

Оглавление

  1. План счетов или основа бухгалтерского мышления.
  2. Операции и проводки – общее понимание
  3. Отчетность. Как составить отчет и как прочитать отчет, составленный не вами.
  4. Вместо заключения.

«Скажите, о великий, что нужно для хорошей бухгалтерии?»

 – задал я вопрос главному бухгалтеру.

«Хорошие бухгалтера» – ответил главный бухгалтер.

Из жизни программиста.

  1. План счетов или основа бухгалтерского мышления.

Вся бухгалтерия строится на плане счетов. Давайте разберемся, что же это за страшное понятие такое – План Счетов. На самом деле, ничего страшного здесь нет. План счетов – это просто список, в котором содержатся счета бухгалтерского учета.

Тогда что такое счет бухгалтерского учета? После такого вопроса, хочется залезть в дебри всякого рода терминов и понятий, никому не понятных, а значит никому не нужных, но мы поступим по-другому. Мы на простом примере, составим свой небольшой план счетов и по ходу разберемся, что откуда берется. Итак, начнем.

Для начала нужно запомнить, что счет бухгалтерского учета (БУ) состоит из кода, наименования и нескольких признаков. Например:

КодНаименование
001Касса
002Задолженность покупателей
003Обязательства перед поставщиками
004Доход
005Расход
006Товар

В данном примере мы создали несколько счетов, назначили этим счетам коды и наименования.

-А для чего это надо? – спросите Вы.

Вот здесь и начинается самое интересное. У каждого счета, помимо кода и наименования, существует еще Дебетовая сторона и Кредитовая сторона. Это очень похоже на качели. С одной стороны Дебет, с другой стороны Кредит. В какую сторону качели качнутся, в ту сторону и увеличивается остаток (остаток в бухгалтерии называется Сальдо).

-Так для чего же все-таки счета?

-Для создания бухгалтерских записей.

-А что такое признаки?

-Признаки счетов – это договоренность о том, как мы будем воспринимать этот счет.

Опять же пример: Мы создали счет Касса, присвоили ему код, но вдруг возникла необходимость вести на этом счете учет по нескольким валютам, то есть у нас в кассу, помимо национальной валюты, будут поступать деньги и в других валютах, например в Евро, долларах, фунтах.

Что для этого нужно? Ответ прост: Давайте сделаем признак для счетов, назовем этот признак Валютный и будем указывать, является этот счет валютным или нет. Тогда наш План счетов примет следующий вид:

КодНаименованиеВалютныйАктивный/Пассивный
001КассаДаАктивный
002Задолженность покупателейНетАктивный
003Обязательства перед поставщикамиНетПассивный
004ДоходНетПассивный
005РасходНетАктивный
006ТоварыНетАктивный

То есть, в нашем плане счетов мы установили, что Касса будет учитываться по разным валютам, а все остальные счета будут учитываться только по национальной валюте.

Как вы заметили, я добавил еще один признак: Активный/Пассивный. Активные счета – это счета, по которым остаток всегда дебетовый. Пассивные счета – это счета, остаток по которым, всегда кредитовый. Сейчас не слишком на этом заморачивайтесь. Немного позже, мы разберем это подробно.

Мы можем добавлять еще признаки. Например, у нас есть счет Товары, где мы будем хранить данные о поступивших товарах. При этом нам, может быть, интересно знать в каком количестве поступил товар.

Для этого мы можем ввести признак Количественный и указать, для каких счетов мы будем учитывать количество, а для каких нет. Если хотите, то можете самостоятельно составить План Счетов с признаком количественный.

А мы переходим ко второму разделу.

-Это мероприятие или, я бы сказал, операция

-Почему Ы?

-Чтоб никто не догадался

Из фильма «Операция Ы»

  1. Операции и проводки – общее понимание

В первой главе мы создали свой План счетов. Каждый счет этого Плана счетов имеет название и имеет код. Название каждого счета позволяет четко определить, для чего каждый счет предназначен.

Например, у нас есть счет Касса, то есть когда мы его создавали, то подразумевали, что вся наша наличность будет храниться на этом счете. По счету Товар у нас организовано хранение Поступившего товара.

На счете Задолженность Покупателей мы будем хранить долги клиентов. И так далее.

Каждое действие в бухгалтерии называются операциями. Операции состоят из проводок. Проводка – это одна строка бухгалтерской записи и пишется она следующим образом:

Дата          Дебет   |   Кредит         |     Сумма

В колонке дебет и кредит мы ставим коды счетов, участвующих в проводке. В графе сумма, мы ставим сумму проводки, в колонке Дата, указываем дату проводки. В принципе, мы могли бы поставить и наименования счетов в колонки Дебет и Кредит, вместо кодов, но коды ставить удобнее, тем более, так делают бухгалтера.

Рассмотрим пример: Мы покупаем товар у Поставщика на сумму 20000р., затем, через неделю, Покупателю отпускаются товары, на сумму 10000р. и в кассу поступают деньги от покупателя, на сумму 5000р. тогда проводки будут выглядеть так:

Дата          Дебет    |   Кредит        |      Сумма     | Валюта

02.02.09     006            003                    20000                               получаем товар от поставщика

В данном случае на дебет счета 006 (Товары) записывается сумма 20000р. и одновременно на кредит счета 003 (Обязательства перед поставщиками) записывается тоже 20000р.

Дата          Дебет    |   Кредит       |      Сумма        |   Валюта

Источник: https://infostart.ru/public/94641/

Задачи по цитологии на ЕГЭ по биологии – материалы для подготовки к ЕГЭ по Биологии

Помогите с одной задачей,объясните развернуто

Автор статьи – Д. А. Соловков, кандидат биологических наук

Типы задач по цитологии

Задачи по цитологии, которые встречаются в ЕГЭ, можно разбить на семь основных типов. Первый тип связан с определением процентного содержания нуклеотидов в ДНК и чаще всего встречается в части А экзамена.

Ко второму относятся расчетные задачи, посвященные определению количества аминокислот в белке, а также количеству нуклеотидов и триплетов в ДНК или РНК. Этот тип задач может встретиться как в части А, так в части С.

Задачи по цитологии типов 3, 4 и 5 посвящены работе с таблицей генетического кода, а также требуют от абитуриента знаний по процессам транскрипции и трансляции. Такие задачи составляют большинство вопросов С5 в ЕГЭ.

Задачи типов 6 и 7 появились в ЕГЭ относительно недавно, и они также могут встретиться абитуриенту в части С. Шестой тип основан на знаниях об изменениях генетического набора клетки во время митоза и мейоза, а седьмой тип проверяет у учащегося усвоения материала по диссимиляции в клетке эукариот.

Ниже предложены решения задач всех типов и приведены примеры для самостоятельной работы. В приложении дана таблица генетического кода, используемая при решении.

Решение задач первого типа

Основная информация:

  • В ДНК существует 4 разновидности нуклеотидов: А (аденин), Т (тимин), Г (гуанин) и Ц (цитозин).
  • В 1953 г Дж.Уотсон и Ф.Крик открыли, что молекула ДНК представляет собой двойную спираль.
  • Цепи комплементарны друг другу: напротив аденина в одной цепи всегда находится тимин в другой и наоборот (А-Т и Т-А); напротив цитозина — гуанин (Ц-Г и Г-Ц).
  • В ДНК количество аденина и гуанина равно числу цитозина и тимина, а также А=Т и Ц=Г (правило Чаргаффа).

Задача: в молекуле ДНК содержится  аденина. Определите, сколько (в ) в этой молекуле содержится других нуклеотидов.

Решение: количество аденина равно количеству тимина, следовательно, тимина в этой молекуле содержится . На гуанин и цитозин приходится . Т.к. их количества равны, то Ц=Г=.

Решение задач второго типа

Основная информация:

  • Аминокислоты, необходимые для синтеза белка, доставляются в рибосомы с помощью т-РНК. Каждая молекула т-РНК переносит только одну аминокислоту.
  • Информация о первичной структуре молекулы белка зашифрована в молекуле ДНК.
  • Каждая аминокислота зашифрована последовательностью из трех нуклеотидов. Эта последовательность называется триплетом или кодоном.

Задача: в трансляции участвовало  молекул т-РНК. Определите количество аминокислот, входящих в состав образующегося белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.

Решение: если в синтезе участвовало  т-РНК, то они перенесли  аминокислот. Поскольку одна аминокислота кодируется одним триплетом, то в гене будет  триплетов или  нуклеотидов.

Решение задач третьего типа

Основная информация:

  • Транскрипция — это процесс синтеза и-РНК по матрице ДНК.
  • Транскрипция осуществляется по правилу комплементарности.
  • В состав РНК вместо тимина входит урацил

Задача: фрагмент одной из цепей ДНК имеет следующее строение: ААГГЦТАЦГТТГ. Постройте на ней и-РНК и определите последовательность аминокислот во фрагменте молекулы белка.

Решение: по правилу комплементарности определяем фрагмент и-РНК и разбиваем его на триплеты: УУЦ-ЦГА-УГЦ-ААУ. По таблице генетического кода определяем последовательность аминокислот: фен-арг-цис-асн.

Решение задач четвертого типа

Основная информация:

  • Антикодон — это последовательность из трех нуклеотидов в т-РНК, комплементарных нуклеотидам кодона и-РНК. В состав т-РНК и и-РНК входят одни те же нуклеотиды.
  • Молекула и-РНК синтезируется на ДНК по правилу комплементарности.
  • В состав ДНК вместо урацила входит тимин.

Задача: фрагмент и-РНК имеет следующее строение: ГАУГАГУАЦУУЦААА. Определите антикодоны т-РНК и последовательность аминокислот, закодированную в этом фрагменте. Также напишите фрагмент молекулы ДНК, на котором была синтезирована эта и-РНК.

Решение: разбиваем и-РНК на триплеты ГАУ-ГАГ-УАЦ-УУЦ-ААА и определяем последовательность аминокислот, используя таблицу генетического кода: асп-глу-тир-фен-лиз.

В данном фрагменте содержится  триплетов, поэтому в синтезе будет участвовать  т-РНК. Их антикодоны определяем по правилу комплементарности: ЦУА, ЦУЦ, АУГ, ААГ, УУУ.

Также по правилу комплементарности определяем фрагмент ДНК (по и-РНК!!!): ЦТАЦТЦАТГААГТТТ.

Решение задач пятого типа

Основная информация:

  • Молекула т-РНК синтезируется на ДНК по правилу комплементарности.
  • Не забудьте, что в состав РНК вместо тимина входит урацил.
  • Антикодон — это последовательность из трех нуклеотидов, комплементарных нуклеотидам кодона в и-РНК. В состав т-РНК и и-РНК входят одни те же нуклеотиды.

Задача: фрагмент ДНК имеет следующую последовательность нуклеотидов ТТАГЦЦГАТЦЦГ. Установите нуклеотидную последовательность т-РНК, которая синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта т-РНК, если третий триплет соответствует антикодону т-РНК. Для решения задания используйте таблицу генетического кода.

Решение: определяем состав молекулы т-РНК: ААУЦГГЦУАГГЦ и находим третий триплет — это ЦУА. Это антикодону комплементарен триплет и-РНК — ГАУ. Он кодирует аминокислоту асп, которую и переносит данная т-РНК.

Решение задач шестого типа

Основная информация:

  • Два основных способа деления клеток — митоз и мейоз.
  • Изменение генетического набора в клетке во время митоза и мейоза.

Задача: в клетке животного диплоидный набор хромосом равен . Определите количество молекул ДНК перед митозом, после митоза, после первого и второго деления мейоза.

Решение: По условию, . Генетический набор:

  • перед митозом , поэтому в этой клетке содержится  молекул ДНК;
  • после митоза , поэтому в этой клетке содержится  молекулы ДНК;
  • после первого деления мейоза , поэтому в этой клетке содержится  молекул ДНК;
  • после второго деления мейоза , поэтому в этой клетке содержится  молекул ДНК.

Решение задач седьмого типа

Основная информация:

  • Что такое обмен веществ, диссимиляция и ассимиляция.
  • Диссимиляция у аэробных и анаэробных организмов, ее особенности.
  • Сколько этапов в диссимиляции, где они проходят, какие химические реакции проходят во время каждого этапа.

Задача: в диссимиляцию вступило  молекул глюкозы. Определите количество АТФ после гликолиза, после энергетического этапа и суммарный эффект диссимиляции.

Решение: запишем уравнение гликолиза: = 2ПВК + 4Н + 2АТФ. Поскольку из одной молекулы глюкозы образуется  молекулы ПВК и 2АТФ, следовательно, синтезируется 20 АТФ. После энергетического этапа диссимиляции образуется  молекул АТФ (при распаде  молекулы глюкозы), следовательно, синтезируется  АТФ. Суммарный эффект диссимиляции равен  АТФ.

Примеры задач для самостоятельного решения

  1. В молекуле ДНК содержится  аденина. Определите, сколько (в ) в этой молекуле содержится других нуклеотидов.
  2. В трансляции участвовало  молекул т-РНК. Определите количество аминокислот, входящих в состав образующегося белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.
  3. Фрагмент ДНК состоит из  нуклеотидов.

    Определите число триплетов и нуклеотидов в иРНК, а также количество аминокислот, входящих в состав образующегося белка.

  4. Фрагмент одной из цепей ДНК имеет следующее строение: ГГЦТЦТАГЦТТЦ. Постройте на ней и-РНК и определите последовательность аминокислот во фрагменте молекулы белка (для этого используйте таблицу генетического кода).

  5. Фрагмент и-РНК имеет следующее строение: ГЦУААУГУУЦУУУАЦ. Определите антикодоны т-РНК и последовательность аминокислот, закодированную в этом фрагменте. Также напишите фрагмент молекулы ДНК, на котором была синтезирована эта и-РНК (для этого используйте таблицу генетического кода).
  6. Фрагмент ДНК имеет следующую последовательность нуклеотидов АГЦЦГАЦТТГЦЦ.

    Установите нуклеотидную последовательность т-РНК, которая синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта т-РНК, если третий триплет соответствует антикодону т-РНК. Для решения задания используйте таблицу генетического кода.

  7. В клетке животного диплоидный набор хромосом равен .

    Определите количество молекул ДНК перед митозом, после митоза, после первого и второго деления мейоза.

  8. В диссимиляцию вступило  молекул глюкозы. Определите количество АТФ после гликолиза, после энергетического этапа и суммарный эффект диссимиляции.
  9. В цикл Кребса вступило  молекул ПВК.

    Определите количество АТФ после энергетического этапа, суммарный эффект диссимиляции и количество молекул глюкозы, вступившей в диссимиляцию.

Ответы:

  1. Т=, Г=Ц= по .
  2.  аминокислот,  триплетов,  нуклеотидов.
  3.  триплета,  аминокислоты,  молекулы т-РНК.
  4. и-РНК: ЦЦГ-АГА-УЦГ-ААГ. Аминокислотная последовательность: про-арг-сер-лиз.
  5. Фрагмент ДНК: ЦГАТТАЦААГАААТГ. Антикодоны т-РНК: ЦГА, УУА, ЦАА, ГАА, АУГ. Аминокислотная последовательность: ала-асн-вал-лей-тир.
  6. т-РНК: УЦГ-ГЦУ-ГАА-ЦГГ. Антикодон ГАА, кодон и-РНК — ЦУУ, переносимая аминокислота — лей.
  7. . Генетический набор:
    1. перед митозом  молекул ДНК;
    2. после митоза  молекулы ДНК;
    3. после первого деления мейоза  молекул ДНК;
    4. после второго деления мейоза  молекул ДНК.
  8. Поскольку из одной молекулы глюкозы образуется  молекулы ПВК и 2АТФ, следовательно, синтезируется  АТФ. После энергетического этапа диссимиляции образуется  молекул АТФ (при распаде  молекулы глюкозы), следовательно, синтезируется  АТФ. Суммарный эффект диссимиляции равен  АТФ.
  9. В цикл Кребса вступило  молекул ПВК, следовательно, распалось  молекулы глюкозы. Количество АТФ после гликолиза — молекул, после энергетического этапа —  молекул, суммарный эффект диссимиляции молекул АТФ.

Итак, в этой статье приведены основные типы задач по цитологии, которые могут встретиться абитуриенту в ЕГЭ по биологии. Надеемся, что варианты задач и их решение будет полезно всем при подготовке к экзамену. Удачи!

Смотри также: Подборка заданий по цитологии на ЕГЭ по биологии с решениями и ответами.

Приложение I Генетический код (и-РНК)

Первое основаниеВторое основаниеТретье основание
УЦАГ
УФенСерТирЦисУ
ФенСерТирЦисЦ
ЛейСер— А
ЛейСерТриГ
ЦЛейПроГисАргУ
ЛейПроГисАргЦ
ЛейПроГлнАргА
ЛейПроГлнАргГ
АИлеТреАснСерУ
ИлеТреАснСерЦ
ИлеТреЛизАргА
МетТреЛизАргГ
ГВалАлаАспГлиУ
ВалАлаАспГлиЦ
ВалАлаГлуГлиА
ВалАлаГлуГлиГ

Источник: https://ege-study.ru/ru/ege/materialy/biologiya/zadachi-po-citologii-na-ege-po-biologii/

Вопрос права
Добавить комментарий